Gene Network Analysis of Bone Marrow Mononuclear Cells Reveals Activation of Multiple Kinase Pathways in Human Systemic Lupus Erythematosus
نویسندگان
چکیده
BACKGROUND Gene profiling studies provide important information for key molecules relevant to a disease but are less informative of protein-protein interactions, post-translational modifications and regulation by targeted subcellular localization. Integration of genomic data and construction of functional gene networks may provide additional insights into complex diseases such as systemic lupus erythematosus (SLE). METHODOLOGY/PRINCIPAL FINDINGS We analyzed gene expression microarray data of bone marrow mononuclear cells (BMMCs) from 20 SLE patients (11 with active disease) and 10 controls. Gene networks were constructed using the bioinformatic tool Ingenuity Gene Network Analysis. In SLE patients, comparative analysis of BMMCs genes revealed a network with 19 central nodes as major gene regulators including ERK, JNK, and p38 MAP kinases, insulin, Ca(2+) and STAT3. Comparison between active versus inactive SLE identified 30 central nodes associated with immune response, protein synthesis, and post-transcriptional modification. A high degree of identity between networks in active SLE and non-Hodgkin's lymphoma (NHL) patients was found, with overlapping central nodes including kinases (MAPK, ERK, JNK, PKC), transcription factors (NF-kappaB, STAT3), and insulin. In validation studies, western blot analysis in splenic B cells from 5-month-old NZB/NZW F1 lupus mice showed activation of STAT3, ITGB2, HSPB1, ERK, JNK, p38, and p32 kinases, and downregulation of FOXO3 and VDR compared to normal C57Bl/6 mice. CONCLUSIONS/SIGNIFICANCE Gene network analysis of lupus BMMCs identified central gene regulators implicated in disease pathogenesis which could represent targets of novel therapies in human SLE. The high similarity between active SLE and NHL networks provides a molecular basis for the reported association of the former with lymphoid malignancies.
منابع مشابه
Influence of 1 Alpha, 25-Dihydroxyvitamin D3 on T Helper 17 Cells and Related Cytokines in Systemic Lupus Erythematosus
Background: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease. Emerging data suggests that T helper 17 (Th17) cells play a pathogenic role in SLE and the increased number of these cells correlates with disease activity. In recent years, 1α, 25-dihydroxyvitamin D3 (1,25VitD3) has been considered as an immunomodulatory factor. Objective: To investigate the effect of 1,25VitD3...
متن کاملBone Marrow Necrosis: Frequency and clinicopathilogical Findings in Marrow Biopsyes
Background and Objectives: Bone marrow necrosis (BMN) is a rare and ominous complication of wide variety of diseases including hematologic malignancy. This study was performed to identify frequency and the underlying associated diseases of marrow necrosis. Materials and Methods: In this descriptive study, totally 850 bone marrow trephine biopsies related to living patients at the Pathology ...
متن کاملEffects of Major Epigenetic Factors on Systemic Lupus Erythematosus
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...
متن کاملInfluence of vitamin D on cell cycle, apoptosis, and some apoptosis related molecules in systemic lupus erythematosus
Objective(s):Genetic and environmental factors are involved in the pathogenesis of systemic lupus erythematosus (SLE). Autoreactive lymphocytes are cleared through apoptosis and any disturbance in the apoptosis or clearance of apoptotic cells may disturb tolerance and lead to autoimmunity. Vitamin D has anti-proliferative effects and controls cell cycle progression. In this study we investigate...
متن کاملIn vitro Effect of Pomalidomide on Bone Marrow Mononuclear Cells from Multiple Myeloma Patients
Background: Many features of anticancer drugs, including cytotoxicity and/or cytokine induction, are studied using cell lines orhuman blood leukocytes. However, in a disease such as multiple myeloma, most cancerous cells are resided within bone marrowmononuclear cells. In the present study, we investigated the effect of pomalidomide on apoptosis and IL-2 production of bonemarrow mononuclear cel...
متن کامل